DESCRIPTION

The LT ${ }^{\circledR}$ 1806/LT1807 are single/dual Iow noise rail-to-rail input and output unity-gain stable op amps that feature a 325MHz gain-bandwidth product, a 140V/us slew rate and a 85 mA output current. They are optimized for low voltage, high performance signal conditioning systems.
The LT1806/LT1807 have a very low distortion of -80 dBc at 5 MHz , a low input referred noise voltage of $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and a maximum offset voltage of $550 \mu \mathrm{~V}$ that allows them to be used in high performance data acquisition systems.
The LT1806/LT1807 have an input range that includes both supply rails and an output that swings within 20 mV of either supply rail to maximize the signal dynamic range in low supply applications.
The LT1806/LT1807 maintain their performance for supplies from 2.5 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.
The LT1806 is available in an 8-pin S0 package with the standard op amp pinout and a 6-pin SOT-23 package. The LT1807 features the standard dual op amp pinout and is available in 8-pin SO and MSOP packages. These devices can be used as plug-in replacements for many op amps to improve input/output range and performance.

TYPICAL APPLICATION

4096 Point FFT Response

LT1806/LT1807

ABSOLUTG MAXIMUM RATINGS
 (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 12.6V Input Voltage (Note 2) .. $\pm V_{S}$ Input Current (Note 2) $\pm 10 \mathrm{~mA}$ Output Short-Circuit Duration (Note 3) Indefinite Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).............. $300^{\circ} \mathrm{C}$ Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1806CS6 LT1806IS6		LT1806CS8 LT1806IS8
	S6 PART MARKING		S8 PART MARKING
	LTNK LTNL		$\begin{aligned} & 1806 \\ & 1806 \mid \end{aligned}$
	ORDER PART NUMBER		ORDER PART NUMBER
	LT1807CMS8 LT1807IMS8		LT1807CS8 LT1807IS8
	MS8 PART MARKING		S8 PART MARKING
	LTTT LTTV		$\begin{aligned} & 1807 \\ & 18071 \end{aligned}$

Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+}(\text {LT1806 SOT-23 }) \\ & V_{C M}=V^{-}(\text {LT1806 SOT-23 }) \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 550 \\ & 550 \\ & 700 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta V_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=V^{-} \text {to } V^{+}(\text {LT1806 SOT-23 }) \end{aligned}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & 550 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}		200	1000	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 V \end{aligned}$	-13	$\begin{gathered} 1 \\ -5 \end{gathered}$	4	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		6	17	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{O} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}	0.08	2.1	$\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz	800		$\mathrm{n} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$	3.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$	1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		2		pF
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	75 220 9 22 60 150		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	79 100 74 95		dB dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	73 100 68 95		dB dB
	Input Common Mode Range		V-	V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	90105		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	84105		dB
	Minimum Supply Voltage (Note 6)		2.3	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=25 \mathrm{~mA}$	$\begin{gathered} 8 \\ 50 \\ 170 \end{gathered}$	$\begin{gathered} \hline 50 \\ 130 \\ 375 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=25 \mathrm{~mA} \\ \hline \end{array}$	$\begin{gathered} 15 \\ 85 \\ 350 \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ 180 \\ 650 \\ \hline \end{gathered}$	mV mV mV
$I_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{ll} \pm 35 & \pm 85 \\ \pm 30 & \pm 65 \end{array}$		mA mA
Is	Supply Current per Amplifier		9	13	mA
	Disable Supply Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	mA mA
$\overline{\mathrm{ISHDN}}$	$\overline{\text { SHDN }}$ Pin Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Shutdown Output Leakage Current	$\mathrm{V}_{\overline{\text { SHDN }}}=0.3 \mathrm{~V}$	0.1	75	$\mu \mathrm{A}$
V_{L}	SHDN Pin Input Voltage LOW			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage HIGH		$\mathrm{V}^{+}-0.5$		V
t_{ON}	Turn-On Time	$V_{\overline{S H D N}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V}_{\overline{\text { SHDN }}}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	50		ns
GBW	Gain Bandwidth Product	Frequency $=6 \mathrm{MHz}$	325		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	125		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$	10		MHz
HD	Harmonic Distortion	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{L}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{P-P}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	-78		dBc
t_{s}	Settling Time	$0.01 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{L}=1 \mathrm{k}$	60		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150$	0.015		\%
$\Delta \theta$	Differential Phase (NTSC)	$V_{S}=5 \mathrm{~V}, A_{V}=2, R_{L}=150$	0.05		Deg

ELECTRICPL CHARACTERISTICS The o denotes the specifications which apply over the $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$

temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\overline{S H D N}}=$ open; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ half supply, unless otherwise noted.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$

temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SHON}}=\mathrm{open} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+}(\text {LT1806 SOT-23 }) \\ & V_{C M}=V^{-} \text {(LT1806 SOT-23) } \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 800 \\ & 950 \\ & 950 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OS}$	Input Offset Voltage Shift	$\begin{aligned} & V_{C M}=V^{-} \\ & V_{C M}=V^{-} \text {to } V^{+}(\text {LT1806 SOT-23 }) \end{aligned}$	\bullet		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 800 \\ & 950 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}, \mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$	\bullet		200	1400	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-16	$\begin{gathered} 1 \\ -5 \end{gathered}$	6	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		6	22	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.02 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 4.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.02 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.1 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta l_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.07	3	$\mu \mathrm{A}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 50 \\ 6 \\ 35 \end{gathered}$	$\begin{gathered} 140 \\ 16 \\ 100 \end{gathered}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$		$\begin{aligned} & 75 \\ & 71 \end{aligned}$	$\begin{aligned} & 94 \\ & 89 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet	$\begin{aligned} & 69 \\ & 65 \end{aligned}$	$\begin{aligned} & 94 \\ & 89 \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	V-		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	86	105		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	80	105		dB
	Minimum Supply Voltage (Note 6)	$\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	\bullet		2.3	2.5	V
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 15 \\ 65 \\ 170 \end{gathered}$	$\begin{gathered} \hline 70 \\ 150 \\ 400 \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 30 \\ 110 \\ 350 \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & 240 \\ & 700 \\ & \hline \end{aligned}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 22 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 45 \\ & \pm 40 \end{aligned}$		mA mA
Is	Supply Current per Amplifier		\bullet		11	16	mA
	Disable Supply Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V \overline{\mathrm{SHDN}}=0.3 . \mathrm{V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V} \overline{\operatorname{SHDN}}=0.3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	mA mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0.3 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 170 \\ & 120 \end{aligned}$	$\begin{aligned} & 450 \\ & 400 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Shutdown Output Leakage Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		1.2		$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
t_{ON}	Turn-On Time	$V_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		50		ns
GBW	Gain Bandwidth Product	Frequency $=6 \mathrm{MHz}$	\bullet		250		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet		80		$\mathrm{V} / \mu \mathrm{V}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	\bullet		6		MHz

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {SHON }}=$ open; $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{\text {CM }}=V^{-} \\ & V_{\text {CM }}=V^{+} \text {(LT1806 SOT-23) } \\ & V_{\text {CM }}=V^{-} \text {(LT1806 SOT-23) } \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 700 \\ & 700 \\ & 750 \\ & 750 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\text {CM }}=V^{-} \text {to } V^{+} \\ & V_{\text {CM }}=V^{-} \text {to } V^{+} \text {(LT1806 SOT-23) } \end{aligned}$		$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 700 \\ & 750 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}, \mathrm{V}_{\text {CM }}=\mathrm{V}^{+}$		200	1200	$\mu \mathrm{V}$
IB	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$	-14	$\begin{gathered} 1 \\ -5 \end{gathered}$	5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		6	19	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.2 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-}+0.2 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.6 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\triangle{ }^{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.2 \mathrm{~V}$ to V^{+}		0.07	2.3	$\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz		800		$\mathrm{n} \mathrm{P}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		3.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{i_{n}}$	Input Noise Current Density	$f=10 \mathrm{kHz}$		1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
$\mathrm{A}_{\text {VOL }}$	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \end{aligned}$	$\begin{gathered} 300 \\ 27 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	83	106		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	77	106		dB
	Input Common Mode Range		V ${ }^{-}$		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	90	105		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	84	105		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SINK }}=5 \mathrm{~mA} \\ I_{\text {SINK }}=25 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} 14 \\ 55 \\ 180 \end{gathered}$	$\begin{gathered} 60 \\ 140 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=25 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 20 \\ 90 \\ 360 \end{gathered}$	$\begin{gathered} 70 \\ 200 \\ 700 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 40	± 85		mA
IS	Supply Current per Amplifier			11	16	mA
	Disable Supply Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$		0.4	1.2	mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$		150	350	$\mu \mathrm{A}$
	Shutdown Output Leakage Current	$\mathrm{V}^{\text {SHDN }}=0.3 \mathrm{~V}$		0.3	75	$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage LOW				0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage HIGH		$\mathrm{V}^{+}-0.5$			V
ton	Turn-On Time	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\mathrm{V}_{\text {SHDN }}=4.5 \mathrm{~V}$ to $0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		50		ns
GBW	Gain Bandwidth Product	Frequency $=6 \mathrm{MHz}$	170	325		MHz
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}= \pm 4 \mathrm{~V}$, Measured at $\mathrm{V}_{0}= \pm 3 \mathrm{~V}$	70	140		V/ $/ \mathrm{S}$
FPBW	Full Power Bandwidth	$V_{0}=8 V_{\text {P-P }}$		5.5		MHz
HD	Harmonic Distortion	$\mathrm{A}_{V}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=2 \mathrm{~V}_{\text {P-P }}, \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$		-80		dBc
ts	Settling Time	$0.01 \%, \mathrm{~V}_{\text {STEP }}=8 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		120		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=2, R_{L}=150$		0.01		\%
$\Delta \theta$	Differential Phase (NTSC)	$A_{V}=2, R_{L}=150$		0.01		Deg

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0$ pen; $\mathrm{V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{\text {OUT }}=\mathbf{O V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+}(\text {LT1806 SOT-23 }) \\ & V_{C M}=V^{-}(\text {LT1806 SOT-23 }) \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
Vos TC	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\text {CM }}=V^{-} \text {to } V^{+} \\ & V_{C M}=V^{-} \text {to } V^{+} \text {(LT1806 SOT-23) } \end{aligned}$	\bullet		$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 900 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
	Input Offset Voltage Match (Channel-to Channel) (Note 10)	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}$	\bullet		300	1400	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-15	$\begin{gathered} 1 \\ -6 \\ \hline \end{gathered}$	6	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		7	21	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.03 \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta \mathrm{l}_{\text {OS }}$	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.07	2.8	$\mu \mathrm{A}$
$\mathrm{A}_{\mathrm{VOL}}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	\bullet	$\begin{gathered} 80 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ 25 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	81	100		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	75	100		dB
	Input Common Mode Range		\bullet	V^{-}		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	\bullet	88	105		dB
	PSRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}^{-}=0 \mathrm{~V}$	\bullet	82	106		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\begin{aligned} & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=25 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 18 \\ 60 \\ 185 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ 500 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=25 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 40 \\ 110 \\ 360 \end{gathered}$	$\begin{aligned} & 140 \\ & 240 \\ & 750 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
ISC	Short-Circuit Current		\bullet	± 35	± 75		mA
Is	Supply Current per Amplifier		\bullet		14	20	mA
	Disable Supply Current	$V^{\text {SHDN }}$ $=0.3 \mathrm{~V}$	\bullet		0.4	1.4	mA
$\overline{\text { SHDN }}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		160	400	$\mu \mathrm{A}$
	Shutdown Output Leakage Current	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		1		$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
t_{ON}	Turn-On Time	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		80		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$V_{\text {SHDN }}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		50		ns
GBW	Gain Bandwidth Product	Frequency $=6 \mathrm{MHz}$	\bullet	150	300		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } \mathrm{V}_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	60	120		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{0}=8 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	\bullet		4.5		MHz

 temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\overline{\text { SHDN }}}=$ open; $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{OV}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & V_{C M}=V^{+}(\text {LT1806 SOT-23 }) \\ & V_{C M}=V^{-} \text {(LT1806 SOT-23) } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & 975 \\ & 975 \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
V OS $^{\text {TC }}$	Input Offset Voltage Drift (Note 8)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{\text {CM }}=V^{-} \text {to } V^{+} \\ & V_{C M}=V^{-} \text {to } V^{+} \text {(LT1806 SOT-23) } \end{aligned}$	\bullet		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 900 \\ & 975 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{C M}=\mathrm{V}^{-}$to V^{+}	\bullet		300	1600	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet	-16	$\begin{aligned} & \hline 1.2 \\ & -5 \\ & \hline \end{aligned}$	7	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		6	23	$\mu \mathrm{A}$
	Input Bias Current Match (Channel-to-Channel) (Note 10)	$\begin{aligned} & V_{C M}=V^{+}-0.2 \mathrm{~V} \\ & V_{C M}=V^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=\mathrm{V}^{+}-0.2 \mathrm{~V} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-}+0.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.03 \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\Delta \mathrm{l}_{0 S}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}+0.4 \mathrm{~V}$ to $\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		0.07	3.2	$\mu \mathrm{A}$
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}=-2 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	\bullet	$\begin{gathered} 60 \\ 7 \end{gathered}$	$\begin{gathered} 175 \\ 17 \\ \hline \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	80	100		dB
	CMRR Match (Channel-to-Channel) (Note 10)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet	74	100		dB
	Input Common Mode Range		\bullet	V^{-}		V^{+}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	\bullet	86	105		dB
	PSRR Match (Channel-to-Channel) (Note 10)		\bullet	80	105		dB
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW (Note 7)	No Load $\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=20 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 20 \\ 65 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 170 \\ & 500 \\ & \hline \end{aligned}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 50 \\ 115 \\ 360 \end{gathered}$	$\begin{aligned} & 160 \\ & 260 \\ & 700 \\ & \hline \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 25	± 55		mA
I_{S}	Supply Current		\bullet		15	22	mA
	Disable Supply Current	$V \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		0.45	1.5	mA
$\bar{\triangle}$	$\overline{\text { SHDN }}$ Pin Current	$\mathrm{V}_{\text {SHDN }}=0.3 \mathrm{~V}$	\bullet		170	450	$\mu \mathrm{A}$
	Shutdown Output Leakage Current	$\mathrm{V} \overline{\text { SHDN }}=0.3 \mathrm{~V}$	\bullet		1.2		$\mu \mathrm{A}$
V_{L}	$\overline{\text { SHDN }}$ Pin Input Voltage LOW		\bullet			0.3	V
V_{H}	$\overline{\text { SHDN }}$ Pin Input Voltage HIGH		\bullet	$\mathrm{V}^{+}-0.5$			V
ton	Turn-On Time	$V_{\overline{S H D N}}=0.3 \mathrm{~V}$ to 4.5V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		80		ns
toff	Turn-Off Time	$V_{\overline{S H D N}}=4.5 \mathrm{~V}$ to 0.3V, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	\bullet		50		ns
GBW	Gain Bandwidth Product	Frequency $=6 \mathrm{MHz}$	\bullet	125	290		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, V_{0}= \pm 4 \mathrm{~V}, \\ & \text { Measured at } V_{0}= \pm 3 \mathrm{~V} \end{aligned}$	\bullet	50	100		V/us
FPBW	Full Power Bandwidth	$V_{0}=8 V_{\text {P-P }}$	-		4		MHz

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4V, the input current should be limited to less than 10 mA .

ELECTRICAL CHARACTERISTICS

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT1806C/LT1806I and LT1807C/LT1807I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT1806C/LT1807C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1806C/LT1807C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1806I/LT1807I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Thermal resistance varies depending upon the amount of PC board metal attached to the V^{-}pin of the device. θ_{JA} is specified for a certain amount of $20 z$ copper metal trace connecting to the V^{-}pin as described in the thermal resistance tables in the Applications Information section.
Note 10: Matching parameters are the difference between the two amplifiers of the LT1807.

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1806/LT1807

TYPICAL PGRFORMANCE CHARACTERISTICS

18067 G07

$\overline{\text { SHDN Pin Current }}$ vs SHDN Pin Voltage

18067 G13

Output Saturation Voltage vs Load Current (Output Low)

18067 G08
Output Short-Circuit Current vs Power Supply Voltage

Output Saturation Voltage vs Load Current (Output High)

18067 G09
Supply Current
vs SHDN Pin Voltage

18067 G12

18067 G14

TYPICAL PGRFORMANCE CHARACTGRISTICS

18067916

18067 G19

Gain Bandwidth and Phase Margin vs Supply Voltage

Input Noise Current vs Frequency

Gain Bandwidth and Phase Margin vs Temperature

Warm-Up Drift vs Time (LT1806S8)

0.1 Hz to 10 Hz Output Voltage Noise

Slew Rate vs Temperature

LT1806/LT1807

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Rail-to-Rail Characteristics

The LT1806/LT1807 have input and output signal range that covers from negative power supply to positive power supply. Figure 1 depicts a simplified schematic of the amplifier. The input stage is comprised of two differential amplifiers, a PNP stage Q1/Q2 and a NPN stage Q3/Q4 that are active over different ranges of common mode input voltage. The PNP differential pair is active between the negative supply to approximately 1.5 V below the positive
supply. As the input voltage moves closer toward the positive supply, the transistor Q5 will steer the tail current I_{1} to the current mirror Q6/Q7, activating the NPN differential pair. The PNP pair becomes inactive for the rest of the input common mode range up to the positive supply.
A pair of complementary common emitter stages Q14/ Q15 that enable the output to swing from rail to rail constructs the output stage. The capacitors C1 and C2 form the local feedback loops that lower the output

Figure 1. LT1806 Simplified Schematic Diagram

APPLICATIONS InFORMATION

impedance at high frequency. These devices are fabricated on Linear Technology's proprietary high speed complementary bipolar process.

Power Dissipation

The LT1806/LT1807 amplifiers combine high speed with large output current in a small package, so there is a need to ensure that the die's junction temperature does not exceed $150^{\circ} \mathrm{C}$. The LT1806 is housed in an S0-8 package or a 6-lead SOT-23 package and the LT1807 is in an S0-8 or 8-lead MSOP package. All packages have the V^{-}supply pin fused to the lead frame to enhance the thermal conductance when connecting to a ground plane or a large metal trace. Metal trace and plated through-holes can be used to spread the heat generated by the device to the backside of the PC board. For example, on a 3/32" FR-4 board with $20 z$ copper, a total of 660 square millimeters connects to Pin 4 of LT1807 in an S0-8 package (330 square millimeters on each side of the PC board) will bring the thermal resistance, θ_{JA}, to about $85^{\circ} \mathrm{C} / \mathrm{W}$. Without extra metal trace beside the power line connecting to the V^{-}pin to provide a heat sink, the thermal resistance will be around $105^{\circ} \mathrm{C} / \mathrm{W}$. More information on thermal resistance for all packages with various metal areas connecting to the V^{-}pin is provided in Tables 1, 2 and 3.
Table 1. LT1806 6-Lead SOT-23 Package

COPPER AREA	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMAL RESISTANCE $($ (JUNCTION-TO-AMBIENT)
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	2500	$135^{\circ} \mathrm{C} / \mathrm{W}$
270	2500	$145^{\circ} \mathrm{C} / \mathrm{W}$
100	2500	$160^{\circ} \mathrm{C} / \mathrm{W}$
20	2500	$200^{\circ} \mathrm{C} / \mathrm{W}$
0		

Device is mounted on topside.
Table 2. LT1806/LT1807 SO-8 Package

COPPER AREA			
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	BACKSIDE $\left(\mathbf{m m}^{2}\right)$	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMAL RESISTANCE $($ (JUNCTION-TO-AMBIENT) $)$
1100	1100	2500	$65^{\circ} \mathrm{C} / \mathrm{W}$
330	330	2500	$85^{\circ} \mathrm{C} / \mathrm{W}$
35	35	2500	$95^{\circ} \mathrm{C} / \mathrm{W}$
35	0	2500	$100^{\circ} \mathrm{C} / \mathrm{W}$
0	0	2500	$105^{\circ} \mathrm{C} / \mathrm{W}$

Device is mounted on topside.

Table 3. LT1807 8-Lead MSOP Package

COPPER AREA			
TOPSIDE $\left(\mathbf{m m}^{2}\right)$	BACKSIDE $\left(\mathbf{m m}^{2}\right)$	BOARD AREA $\left(\mathbf{m m}^{2}\right)$	THERMAL RESISTANCE (JUNCTION-TO-AMBIENT)
540	540	2500	$110^{\circ} \mathrm{C} / \mathrm{W}$
100	100	2500	$120^{\circ} \mathrm{C} / \mathrm{W}$
100	0	2500	$130^{\circ} \mathrm{C} / \mathrm{W}$
30	0	2500	$135^{\circ} \mathrm{C} / \mathrm{W}$
0	0	2500	$140^{\circ} \mathrm{C} / \mathrm{W}$

Device is mounted on topside.
Junction temperature T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} as follows:

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ occurs at the maximum quiescent supply current and at the output voltage which is half of either supply voltage (or the maximum swing if it is less than $1 / 2$ the supply voltage). $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ is given by:

$$
P_{D(M A X)}=\left(V_{S} \bullet I_{S(M A X)}\right)+\left(V_{S} / 2\right)^{2} / R_{L}
$$

Example: An LT1807 in S0-8 mounted on a $2500 \mathrm{~mm}^{2}$ area of PC board without any extra heat spreading plane connected to its V^{-}pin has a thermal resistance of $105^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JA}}$. Operating on $\pm 5 \mathrm{~V}$ supplies with both amplifiers simultaneously driving 50Ω loads, the worstcase power dissipation is given by:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} & =2 \cdot(10 \cdot 14 \mathrm{~mA})+2 \cdot(2.5)^{2} / 50 \\
& =0.28+0.25=0.53 \mathrm{~W}
\end{aligned}
$$

The maximum ambient temperature that the part is allowed to operate is:

$$
\begin{aligned}
T_{A} & =T_{J}-\left(P_{D(M A X)} \cdot 105^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.53 \mathrm{~W} \cdot 105^{\circ} \mathrm{C} / \mathrm{W}\right)=94^{\circ} \mathrm{C}
\end{aligned}
$$

To operate the device at higher ambient temperature, connect more metal area to the V^{-}pin to reduce the thermal resistance of the package as indicated in Table 2.

APPLICATIONS InFORMATION

Input Offset Voltage

The offset voltage will change depending upon which input stage is active and the maximum offset voltage is guaranteed to less than $550 \mu \mathrm{~V}$. To maintain the precision characteristics of the amplifier, the change of $V_{0 S}$ over the entire input common mode range (CMRR) is limited to be less than $550 \mu \mathrm{~V}$ on a single 5 V and 3 V supply.

Input Bias Current

The input bias current polarity depends on a given input common voltage at which the input stage is operating. When the PNP input stage is active, the input bias currents flow out of the input pins. When the NPN input stage is activated, the input bias current flows into the input pins. Because the input offset current is less than the input bias current, matching the source resistances at the input pins will reduce total offset error.

Output

The LT1806/LT1807 can deliver a large output current, so the short-circuit current limit is set around 90 mA to prevent damage to the device. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ (refer to the Power Dissipation section) when the output is continuously short-circuited. The output of the amplifier has reverse-biased diodes connected to each supply. If the output is forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

Overdrive Protection

When the input voltage exceeds the power supplies, two pairs of crossing diodes D1 to D4 will prevent the output from reversing polarity. If the input voltage exceeds either power supply by 700 mV , diode D1/D2 or D3/D4 will turn on to keep the output at the proper polarity. For the phase reversal protection to perform properly, the input current must be limited to less than 5 mA . If the amplifier is
severely overdriven, an external resistor should be used to limit the overdrive current.

The LT1806/LT1807's input stages are also protected against large differential input voltages of 1.4 V or higher by a pair of back-to-back diodes, D5/D8, that prevent the emitter-base breakdown of the input transistors. The current in these diodes should be limited to less than 10 mA when they are active. The worst-case differential input voltage usually occurs when the input is driven while the output is shorted to ground in a unity gain configuration. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins by a pair of protection diodes, ESDD1 to ESDD6, on each pin that are connected to the power supplies as shown in Figure 1.

Capacitive Load

The LT1806/LT1807 are optimized for high bandwidth and low distortion applications. They can drive a capacitive load of about 20pF in a unity-gain configuration, and more for higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability. Graphs on capacitive loads indicate the transient response of the amplifier when driving the capacitive load with a specified series resistor.

Feedback Components

When feedback resistors are used to set up gain, care must be taken to ensure that the pole formed by the feedback resistors and the total capacitance at the inverting input does not degrade stability. For instance, the LT1806/ LT1807 in a noninverting gain of 2 , set up with two 1 k resistors and a capacitance of 3pF (part plus PC board) will probably ring in transient response. The pole is formed at 106MHz that will reduce phase margin by 34 degrees when the crossover frequency of the amplifier is around 70 MHz . A capacitor of 3 pF or higher connected across the feedback resistor will eliminate any ringing or oscillation.

APPLICATIONS InFORMATION

SHDN Pin

The LT1806 has a SHDN pin to reduce the supply current to less than 0.9 mA . When the $\overline{\text { SHDN }}$ pin is pulled low, it will generate a signal to power down the device. If the pin is left unconnected, an internal pull-up resistor of 40 k will keep the part fully operating as shown in Figure 1. The output
will be high impedance during shutdown, and the turn-on and turn-off time is less than 100 ns . Because the input is protected by a pair of back to back diodes, the input signal will feed through to the output during shutdown mode if the amplitude of signal between the inputs is larger than 1.4 V .

TYPICAL APPLICATIONS

Driving A/D Converter

The LT1806/LT1807 have 60 ns settling time to 0.01% on a 2 V step signal, and 20Ω output impedance at 100 MHz , that makes them ideal for driving high speed A / D converters. With the rail-to-rail input and output, and low supply voltage operation, the LT1806/LT1807 are also desirable for single supply applications. As shown in the application on the front page of this data sheet, the LT1807 drives a 10Msps, 12-bit, LTC1420 ADC in a gain of 20. Driving the LTC1420 differentially will optimize the signal-to-noise ratio, SNR, and the total harmonic distortion, THD, of the A/D converter. The lowpass filter, R5, R6 and C3 reduce
noise or distortion products that might come from the input signal. High quality capacitors and resistors, NPO chip capacitor and metal film surface mount resistors, should be used since these components can add to distortion. The voltage glitch of the converter, due to its sampling nature is buffered by the LT1807, and the ability of the amplifier to settle it quickly will affect the spurious free dynamic range of the system. Figure 2 depicts the LT1806 driving LTC1420 at noninverting gain of 2 configuration. The FFT responses show a better than 92dB of spurious free dynamic range, SFDR.

Figure 2. Noninverting A/D Driver

Figure 3. 4096 Point FFT Response

LT1806/LT1807

TYPICAL APPLICATIONS

Single Supply Video Line Driver

The LT1806/LT1807 are wideband rail-to-rail op amps with large output current that allows them to drive video signals in low supply applications. Figure 4 depicts a single supply video line driver with AC coupling to minimize the quiescent power dissipation. Resistors R1 and R2 are used to level-shift the input and output to provide the largest signal swing. The gain of 2 is set up with R3 and $R 4$ to restore the signal at $V_{\text {OUT }}$, which is attenuated by 6 dB due tothe matching of the 75Ω line with the back-terminated
resistor, R5. The back termination will eliminate any reflection of the signal that comes from the load. The input termination resistor, R_{T}, is optional-it is used only if matching of the incoming line is necessary. The values of $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are selected to minimize the droop of the luminance signal. In some less stringent requirements, the value of capacitors could be reduced. The -3 dB bandwidth of the driver is about 90 MHz on 5 V supply, and the amount of peaking will vary upon the value of capacitor C4.

Figure 4. 5V Single Supply Video Line Driver

Figure 5. Video Line Driver Frequency Response

LT1806/LT1807

TYPICAL APPLICATIONS

Single 3V Supply, 4MHz, $4^{\text {th }}$ Order Butterworth Filter
Benefiting from a low voltage supply operation, low distortion and rail-to-rail output of LT1806/LT1807, a low distortion filter that is suitable for antialiasing can be built as shown in Figure 6.

On a 3V supply, the filter built with LT1807 has a passband of 4 MHz with $2.5 \mathrm{~V}_{\text {P-p }}$ signal and stopband that is greater than 70 dB to frequency of 100 MHz . As an option to minimize the DC offset voltage at the output, connect a series resistor of 365Ω and a bypass capacitor at the noninverting inputs of the amplifiers as shown in Figure 6.

Figure 6. Single 3V Supply, 4MHz, 4th Order Butterworth Filter

18067 F07

Figure 7. Filter Frequency Response

TYPICAL APPLICATIONS

1MHz Series Resonant Crystal Oscillator with Square and Sinusoid Outputs

Figure 8 shows a classic 1 MHz series resonant crystal oscillator. At series resonance, the crystal is a low impedance and the positive feedback connection is what brings about oscillation at the series resonance frequency. The RC feedback around the other path ensures that the circuit does not find a stable DC operating point and refuse to oscillate. The comparator output is a 1 MHz square wave with a measured jitter of 28 psRMS with a 5 V supply and 40 Psms $_{\text {RMS }}$ with a 3 V supply. On the other side of the crystal, however, is an excellent looking sine wave except for the fact of the small high frequency glitch caused by the fast
edge and the crystal capacitance (middle trace of Figure 9). Sinusoid amplitude stability is maintained by the fact that the sine wave is basically a filtered version of the square wave; the usual amplitude control loops associated with sinusoidal oscillators are not immediately necessary. ${ }^{1}$ One can make use of this sine wave by buffering and filtering it, and this is the combined task of the LT1806. It is configured as a bandpass filter with a Q of 5 and does a good job of cleaning up and buffering the sine wave. Distortion was measured at -70 dBc and -60 dBc on the second and third harmonics.

[^0]

Figure 8. LT1713 Comparator is Configured as a Series Resonant Crystal Oscillator. The LT1806 Op Amp is Configured in a $\mathrm{Q}=5$ Bandpass Filter with $\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$

Figure 9. Oscillator Waveforms with $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$. Top Trace is Comparator Output. Middle Trace is Crystal Feedback to Pin 2 at LT1713. Bottom Trace is Buffered, Inverted and Bandpass Filtered with a Q of 5 by the LT1806

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S6 Package
6-Lead Plastic SOT-23
(LTC DWG \# 05-08-1634)

PACKAGE DESCRIPTION Dimensions in in intes mililineterss unesss ollemuise noted.

MS8 Package
8-Lead Plastic MSOP
(LTC DWG \# 05-08-1660)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010 " $(0.254 \mathrm{~mm})$ PER SIDE

LT1806/LT1807

TYPICAL APPLICATION

FET Input, Fast, High Gain Photodiode Amplifier

Figure 10 shows a fast, high gain transimpedance amplifier applied to a photodiode. A JFET buffer is used for its extremely low input bias current and high speed. The LT1097 and 2N3904 keep the JFET biased at loss for zero offset and lowest voltage noise. The JFET then drives the LT1806, with RF closing the high speed loop back to the JFET input and setting the transimpedance gain. C4 helps improve the phase margin of the fast loop. Output voltage noise density was measured as $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ with R_{F} short circuited. With R_{F} varied from 100k to 1M, total output
noise was below 1 mV RMs measured over a 10 MHz bandwidth. Table 4 shows results achieved with various values of R_{F} and Figure 11 shows the time domain response with $R_{F}=499 \mathrm{k}$.
Table 4. Results Achieved for Various R_{F}, 1.2V Output Step

$\mathbf{R}_{\mathbf{F}}$	$\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$ RISE TIME	-3 dB BANDWIDTH
100 k	64 ns	6.8 MHz
200 k	94 ns	4.6 MHz
499 k	154 ns	3 MHz
1 M	263 ns	1.8 MHz

Figure 10. Fast, High Gain Photodiode Amplifier

Figure 11. Step Response with $\mathrm{R}_{\mathrm{F}}=499 \mathrm{k}$

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1395	400MHz Current Feedback Amplifier	$800 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, Shutdown
LT1399	Triple 300MHz Current Feedback Amplifier	0.1dB Gain Flatness to 150MHz, Shutdown
LT1632/LT1633	Dual/Quad 45MHz, 45V/us Rail-to-Rail Input and Output Amplifiers	High DC Accuracy 1.35 mV V Mas(MAX), 70mA Output Current, Mapply Current 5.2mA/Amp
LT1809/LT1810	Single/Dual 180MHz Input and Output Rail-to-Rail Amplifiers	350V/ $\mu \mathrm{s}$ Slew Rate, Shutdown, Low Distortion -90dBc at 5MHz

(408)432-1900 •FAX: (408) 434-0507 • www.linear-tech.com

[^0]: ${ }^{1}$ Amplitude will be a linear function of comparator output swing, which is supply dependent and therefore controllable. The important difference here is that any added amplitude stabilization loop will not be faced with the classical task of avoiding regions of nonoscillation versus clipping.

